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Miha Boltežar, miha.boltezar@fs.uni-lj.si,

Phone: +386 1 4771 608, Fax:+386 1 2518 567.

Cite as:

D. Rovšček, J. Slavič and M. Boltežar
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Abstract

When dealing with small and light structures, difficulties occur when mea-

suring the modal parameters. The resonant frequencies are usually relatively

high and therefore a wide frequency range is needed for the measurement.

Furthermore, the mass that is added to the structure by the sensors causes

structural modifications. To overcome these difficulties, an improved method

using an operational modal analysis instead of an experimental modal anal-

ysis is proposed in this study. It is derived from the sensitivity-based op-

erational mode-shape normalisation with a consideration of the mode-shape

variation. The measurement of the excitation force is not needed, because

the operational modal analysis is used and only two simultaneous response

measurements at an unknown excitation are required. The proposed method

includes the cancellation of the added mass, resulting in mode shapes and
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resonant frequencies of the unmodified structure. The numerical and experi-

mental results on small and light structures are compared with the results of

the experimental modal analysis. The comparison shows that the proposed

approach allows measurements over a wide frequency range and increases the

accuracy of the results compared to the sensitivity-based operational mode-

shape normalisation and also compared to the particular experimental modal

analysis method that was used in this study. The advantages of the proposed

method can be seen whenever the mass that is added to the structure by the

accelerometer is not negligible and therefore a variation of the mode shapes

occurs.

Keywords: Operational Modal Analysis, Scaling factor, Structural

modification, Small and light structures

1. Introduction

Modal analyses are used to identify modal parameters (resonant frequen-

cies, mode shapes and damping) [1, 2, 3]. The experimental modal analysis

(EMA) [2], with a simultaneous measurement of the excitation force and the

response of the structure, is the prevailing technique. If the excitation force

and the response of the structure are known, the frequency-response functions

(FRFs) can be calculated and the identification of the mass-normalised mode

shapes (independent of the excitation) is possible. The operational modal

analysis (OMA), on the other hand, is a technique for performing a modal

analysis when the structure is excited by unknown operational loads. It was

initially used as an addition to FRF measurements to define the modal pa-

rameters of the structure during the operation [4]. OMA was also employed
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in rare cases, when people were dealing with large structures and a controlled

excitation was hard to achieve [5], which means that only a modal identifica-

tion with unknown operating loads was possible. The main drawback of OMA

in comparison with EMA is that it cannot identify the mass-normalised mode

shapes [6] and the main advantage is that an excitation-force measurement

is not needed for the OMA, which simplifies the experimental procedure.

The EMA is, in some cases, extremely hard to perform due to accessi-

bility difficulties or the characteristics (dimensions, mass) of the measured

structure [7]. One example of this is when relatively small and light struc-

tures (mass < 50 gram) are measured. The main reason is the mass added to

the structure by the transducers (force sensor, accelerometer), which changes

the structure’s modal characteristics. This effect was researched by Huber

et al. [8], Ozdoganlar et al. [9], Silva et al. [10], Rovšček et al. [11], and oth-

ers. In [11] a light, custom-made, force sensor, which adds only 0.4 grams

to the structure was used. The sensor can operate at high frequencies (up

to 20 kHz), which is suitable for small structures, because they usually have

higher resonant frequencies [9]. OMA was rarely used on small and light

structures in the past, especially because the mode shapes could not be mass

normalised and therefore the modal description of the structure was not com-

plete [2]. But in 2002 a new method was introduced by Parloo et al. [12],

which makes the mass normalisation of the operational mode shapes possi-

ble. The operational mode shapes are normalised by multiplying them by

scaling factors, which are derived from the modal sensitivity of the structure

on a change of the mass matrix. Therefore, the term mass-change strategy is

frequently used to denote Parloo’s method. This mass-change strategy does
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not require the measurement of the excitation force and it was first used on

larger structures, for instance on a bridge [13], on a sprayer boom [14, 15],

etc. The possibility and difficulties of using the mass-change strategy on

small and light structures have not yet been analysed in detail.

The mass-change strategy works with the presumption that the resonant

frequencies shift, but the mode shapes remain almost the same when the

mass is added to the structure, as shown by Parloo et al. [12]. The results

are relatively good, when the quantity of the added mass is just right (about

5 % of the whole mass of the structure), as Lopez-Aenlle et al. [16] concluded.

Furthermore, the added mass needs to be well distributed over the structure.

But when measuring small and light structures, the added mass can be too

high and not well distributed. For this reason, not only do the resonant

frequencies shift, but the mode shapes also change.

In this study an improved method that takes into account the mode-shape

variation due to accelerometer added mass is presented. The normalisation of

the operational mode shapes is based on a sensitivity analysis and a structural

modification of the modal parameters. Two simultaneous measurements of

the response are needed (for the OMA) and the excitation force is unknown.

The reference response is measured by a lightweight accelerometer and the

second response measurement is performed by a Laser Doppler Vibrometer

(LDV). The results of the proposed operational mode-shape normalisation

method are compared to the results of the EMA procedure presented by

Rovšček et al. in [11] and to the numerical model. The method proposed in

this study gives significantly better results than the EMA, especially at low

frequencies (under 500 Hz), and is simpler to use, since the measurement of
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the excitation force is not needed. It can be used on any similar small and

light structure.

Parloo et al. [13, 14] tested larger structures and the masses of the ac-

celerometers were very small compared to the measured structures. There-

fore, the mass-loading effect of the accelerometers was negligible. However,

when measuring small and light structures this effect is significant and it

should be compensated in the modal analysis. The main advantage of the

method presented in this study compared to the sensitivity-based operational

mode-shape normalisation proposed by Parloo et al. [12] is that it also takes

into account the mode-shape variation, which occurs due to the added mass

of the accelerometer. There is also a possibility of using only non-contact

measuring devices (like LDVs) for the measurement to avoid the mass-loading

of the structure; however, in some cases the LDVs cannot be used. For in-

stance, by a laser beam unreachable crevices due to application environment

and/or fixation setup. In addition, the measurements at high frequencies

with relatively small vibration amplitudes can easily reach the limit of the

LDV’s dynamic range. Therefore, the approach proposed in this study is

applicable.

This study is organised as follows. Section 2 presents the theoretical

background of this paper. The sample that was used for the numerical model

and the measurements is presented in Section 3. The numerical model and

its results are described in Section 4. Section 5 presents the experiments

(EMA and OMA) and the comparison of the experimental and numerical

results. A summary of the work is given in Section 6.
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2. Theoretical background

2.1. Sensitivity-based operational mode-shape normalisation

The operational mode shapes are not mass normalised, since the exci-

tation force is not measured when performing the OMA. Therefore, a new

approach was proposed by Parloo et al. [12] to mass normalise the operational

mode shapes on the basis of the modal sensitivity of the structure. The main

idea of the method proposed by Parloo et al. is to normalise the measured

mode shapes by multiplying them by scaling factors. By adding a known

mass to the selected points of the structure the resonant frequencies shift.

From these shifts the scaling factors for each mode shape can be calculated

using the sensitivity analysis. The term mass-change strategy is frequently

used to denote this method.

The use of the modal sensitivity to properly scale the operational mode

shapes was later more thoroughly analysed by other researchers. Lopez-

Aenlle et al. [17, 18, 16, 19], Fernandez et al. [20, 21] and others [22] gave

suggestions about how to accurately normalise the mode shapes using differ-

ent types of mass-change strategies. In [17] the equations for the calculation

of the scaling factors were analysed and an iterative procedure for better

accuracy was developed by Lopez-Aenlle et al. In [19] the influence of the

location, number and size of the added masses on the accuracy of the results

was analysed by Lopez-Aenlle et al. and experimentally verified in [20] by

Fernandez et al., who gave additional instructions on how to perform accu-

rate calculations of the scaling factors in [16]. In [21] a new mass-change

approach, which is based on using several sets of individual mass changes

to estimate the scaling factors, was presented by Fernandez et al. Recently,
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Khatibi et al. [23] and Lopez-Aenlle et al. [24] analysed the possibility of

using a mass-and-stiffness change strategy with the sensitivity analysis for

the mass normalisation of the operational mode shapes. All the listed meth-

ods for the operational mode-shape normalisation are based on the modal

sensitivity of the structure.

Modal sensitivity describes the influence of the structural modification

on the modal parameters of the structure. The modal sensitivity of the

i-th resonant frequency ωi and the mode shape {φi} are defined in [2], as

shown in Equations (1) and (2), where pj represents one of the Np structural

modifications.

∆ω2
i =

Np
∑

j=1

∂ω2
i

∂pj
pj (1)

∆{φi} =

Np
∑

j=1

∂{φi}

∂pj
pj (2)

The mass-change strategy is based on Equation (1), as shown by Parloo

et al. [12]. If the structural modifications pj are the changes of mass at

different points of the structure, then they can be described by a change

of the mass matrix [∆M ]. A known mass [∆M ] needs to be added to the

structure to perform the mass-change strategy. The change of the mass

matrix causes a variation of the modal parameters. If the modal parameters

of the unmodified and modified structure are measured, then the scaling

factors αi can be calculated as shown in Equation (3):

αi =

√

(ω2
i − ω2

i,M)

ω2
i,M{ψ}T [∆M ]{ψ}

(3)

where ωi denotes the i-th resonant frequency of the unmodified structure and

ωi,M is the i-th resonant frequency of the modified structure (when the mass
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[∆M ] is added). {ψ} is the unnormalised mode shape of the structure. A

detailed derivation of (3) can be found in [17], where a presumption is made

that the mode shapes do not change significantly when adding the mass to

the structure ({ψ} ≈ {ψi} ≈ {ψi,M}). The mass-normalised mode shapes

{φi} can then be obtained by multiplying the unnormalised mode shapes

{ψi} by the scaling factors αi:

{φi} = αi{ψi} (4)

Equation (3) can be adjusted to include the modified {ψi,M} or the unmod-

ified {ψi} mode shapes, as shown in Equations (5), (6) and (7), derived by

Lopez-Aenlle et al. [17]:

αi,00 =

√

(ω2
i − ω2

i,M)

ω2
i,M{ψi}T [∆M ]{ψi}

(5)

αi,01 =

√

(ω2
i − ω2

i,M)

ω2
i,M{ψi}T [∆M ]{ψi,M}

(6)

αi,11 =

√

(ω2
i − ω2

i,M)

ω2
i,M{ψi,M}T [∆M ]{ψi,M}

(7)

where αi,00 is calculated using only the unmodified mode shapes, αi,01 is the

modified and unmodified mode shapes and αi,11 is just the modified mode

shapes. All three scaling factors αi,00, αi,01 and αi,11 give accurate results. In

some cases (like in this study) only the mode shapes {φi} of the unmodified

structure or only the mode shapes {φi,M} of the modified structure can be

measured; therefore, only the scaling factors αi,00 or αi,11 can be calculated.
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If both {φi} and {φi,M} can be measured, then αi,01 is the most accurate, as

shown in [17].

Another method can be obtained by using the approximation:

(ω2
i − ω2

i,M)

ω2
i,M

≈
2(ωi − ωi,M)

ωi

(8)

in Equation (5), the equation:

αi,p =

√

2(ωi − ωi,M)

ωi{ψi}T [∆M ]{ψi}
(9)

for the calculation of the scaling factor αi,p is derived as proposed by Parloo

et al. [12]. Equation (9) gives less accurate results than (5), (6) and (7),

because of the approximation (8).

Lopez-Aenlle et al. [24] also mention other improved methods for the

calculation of the scaling factors. One of them is the Bernal projection equa-

tion [25] that gives good estimates of the scaling factor αi,b even in cases

when the mode shapes change significantly. The Bernal projection equation

is shown in (10):

αi,b =

√

(ω2
i − ω2

i,M)Bii

ω2
i,M{ψi}T [∆M ]{ψi,M}

(10)

Bii represents the i-th diagonal element of the matrix [B]. The matrix [B] is

calculated as shown in Equation (11), where [Ψ] denotes the modal matrix of

the unmodified mode shapes {ψi} and [ΨM ] the modal matrix of the modified

mode shapes {ψi,M}:

[B] = [Ψ]−1[ΨM ] (11)
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2.2. Operational mode-shape normalisation of small and light structures

The mass-change strategy with the scaling factors shown in Equations

(5)-(7) gives relatively good results for most of the structures, as shown by

Coppotelli [22]. But when small and light structures are analysed (Figure 1),

the mass of the accelerometer can be relatively large in comparison to the

other masses added to the structure for the normalisation [10]. Therefore,

the added mass is not well distributed over the structure and not only do

the resonant frequencies change, but also the mode shapes. The condition

{ψi} ≈ {ψi,M} is not fulfilled, which leads to incorrect scaling factors αi

(Figure 1). The mass of the accelerometer for the mass-change strategy is

also considered as the added mass to the structure in Figure 1 (left). Parloo

et al. [12] performed the mass-change strategy with the accelerometers on the

unmodified and the modified structure, because the mass of the accelerometer

was negligible. The mass-change strategy presented in Figure 1 (left) is

therefore even more favourable for small and light structures, because it

reduces the influence of the added mass of the accelerometer on the measured

modal parameters. However, when the mass of the accelerometer is larger

than the other added masses for the mass-change strategy the scaling factors

still need correction.

To correctly measure and normalise the mode shapes of the structure it-

self an improved method that can serve as an upgrade of the mass-change

strategy is proposed in this study. The mass-change strategy is performed

on the structure with the accelerometer. The added mass is well distributed

over the modified structure; therefore, the mode shapes of the unmodified and

modified structure do not differ significantly (the condition {ψi} ≈ {ψi,M}
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is fulfilled). Consequently, the scaling factors αi are correct and the mode

shapes of the structure with the accelerometer can be normalised. Then the

variation of the mode shapes due to the added mass of the accelerometer

needs to be determined and the normalised mode shapes {φ∗
i } of the struc-

ture itself (without the accelerometer) can be obtained. A proper method

is needed to determine the mode-shape variation due to the accelerometer’s

added mass. The variation of the resonant frequencies due to the accelerom-

eter’s added mass can be taken into account by measuring the resonant fre-

quencies of the structure itself (without the accelerometer) using only the

LDV or by employing the same methods as for the mode-shape variation.

Therefore, different methods for the variation of the modal parameters pro-

posed by He [26], Aryana and Bahai [27] and Chen [28] were analysed in

Section 2.3 in order to choose the right one for this study. The method pro-

posed in this study is useful for the cases, when the OMA is performed by an

accelerometer and an LDV. Then the accelerometer added mass should be

cancelled by a mode-shape variation method. However, if there is a possibil-

ity of using two LDVs for the OMA, then the mode shapes of the structure

without the accelerometer can be measured. In that case the Bernal pro-

jection equation (10) should be used to correctly normalise the mode shapes

and the mode shape variation is already taken into account by that equation.

2.3. Variation of the modal parameters due to a structural modification

If the changes in the structural parameters from the initial to the modified

structure are relatively small, then the sensitivity-analysis technique or other

similar methods with a first-order approximation can be used to calculate

the variation of the modal parameters, as shown by He [26]. But when
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the structural modifications are larger, these approximations do not produce

results that are good enough, as pointed out by Maia and Silva [2] and Aryana

and Bahai [27]. Therefore, Chen [28] proposed an iterative procedure to

provide exact predictions for the resonant frequencies and the corresponding

mode shapes of the modified structure. Additionally, Chen [28] presented a

high-order approximation approach, which gives better results compared to

the sensitivity analysis, but still not as good as the aforementioned iterative

procedure, which was also used in this study.

Chen’s iterative procedure gives approximations of the i-th modified eigen-

value λ∗i and eigenvector {φ∗
i }, which are determined on the basis of the i-th

unmodified eigenvalue λi and eigenvector {φi} of the structure. The proce-

dure is presented in Equations (12) and (13).

λ∗i = λi +∆λi (12)

{φ∗
i } = {φi}+

N
∑

k=1,k 6=i

Cik{φk} (13)

The i-th eigenvalue λi =
√

ω2
i (1 + iηi) contains the information on the res-

onant frequency ωi and the damping loss factor ηi; the eigenvector {φi}

represents the i-th normalised mode shape. The modification of the i-th

eigenvalue is denoted by ∆λi and the modification of the i-th eigenvector

can be expressed as a linear combination of all the independent original

eigenvectors except for the corresponding one (k 6= i). Cik is a participation

factor of the k-th eigenvector when calculating the modification of the i-th

eigenvector. The definitions of the modifications of the eigenvalues ∆λi and

the participation factors Cik are presented in Equations (14) and (15), de-
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rived by Chen [28], where aKki and a
M
ki are defined as shown in Equations (16)

and (17).

∆λi =

(

aKii − λia
M
ii

)

+
N
∑

k=1,k 6=i

(

aKki − λia
M
ki

)

Cik

1 + aMii +
N
∑

k=1,k 6=i

aMkiCik

(14)

Cik =

(

aKki − λ∗i a
M
ki

)

+
N
∑

l=1,l 6=i,k

(

aKkl − λ∗ia
M
kl

)

Cil

(λ∗i − λk)− (aKkk − λ∗ia
M
kk)

(15)

aKki = {φk}
T [∆K]{φi} (16)

aMki = {φk}
T [∆M ]{φi} (17)

It is clear from Equations (14) and (15) that the calculations of ∆λi and Cik

do not require a knowledge of the mass and stiffness matrices of the original

or modified structures. It is sufficient to know the modification of these

two matrices ([∆M ] and [∆K]). The whole iterative procedure is done by

repeatedly alternating between (14) and (15) until the convergence criterion

presented in Equation (18) is satisfied (ε is the convergence tolerance). In

the first approximation of ∆λi we use the value Cik = 0 for all i and k.
∣

∣

∣
∆λ

(n)
i −∆λ

(n−1)
i

∣

∣

∣

∣

∣

∣
λi +∆λ

(n)
i

∣

∣

∣

≺ ε (18)

The described iterative procedure of Chen ensures an accurate estimation of

the mode-shape variation due to the structural modification. For this reason

it was used in this study to determine the mode-shape variation caused by

the additional mass of the accelerometer.
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3. Sample

To compare the experimental approaches EMA, OMA and the numerical

model, a sample of simple geometry with the proper geometrical and modal

characteristics was needed. A steel sample of circular cross-section with

6-mm diameter, 108-mm length and 21-gram mass was used, as shown in

Figure 2. Its geometry was chosen in such a way as to ensure one axial-mode,

one torsional-mode, and many bending-mode shapes in the frequency range

of the measurement (0-20 kHz). The sample has a small, narrower section

where the diameter is reduced to 1.4 mm (to lower the first axial resonant

frequency under 20 kHz) and two grooves (introducing axial asymmetry). In

this study the focus will only be on the first five bending-mode shapes in the

direction of the Y axis. Other mode shapes and resonant frequencies can be

measured in the same manner. Fifteen points on the structure, which are

shown in Figure 2, were used for the measurements; therefore, the results

of the model will also be calculated for these points. The sample that was

used for this study is a homogenous structure without any joints. It has well-

known material characteristics and geometry; therefore, a relatively accurate

FEM was formed based on this.

4. Numerical experiment

The variation of the mode shapes due to the added mass was simulated

using the numerical model, and the correct functioning of Chen’s method,

proposed in Section 2.3, was verified.
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4.1. Modal analysis

An FEM model was built based on the geometrical and material parame-

ters of the sample. A numerical modal analysis was performed on the model

to determine the resonant frequencies and the normalised mode shapes. Vis-

cous damping with a constant damping ratio of 3 % was introduced to the

model, taking into account the results of the measurement. The modal pa-

rameters were determined for the structure without the added mass (load

case A) and for the structure with the added mass of the accelerometer at

point 15 (load case B). The added mass of the accelerometer was simulated

with a single-node finite element that represents a concentrated mass. The

total added mass of the accelerometer, which was used for the OMA, was

estimated to be 1 gram (0.7 gram accelerometer and 0.3 gram connecting

cable). Therefore, this value was also used for the load case B of the numer-

ical model. Since the damping is based on the results of the measurement,

it is reasonable to compare the resonant frequencies and mode shapes only.

The resonant frequencies can be seen in Table 1 and the corresponding mode

shapes in Figure 3. The mode shapes are denoted with indexes num-A (repre-

senting the numerical model load case A), num-B (representing the numerical

model load case B), and num-B* (representing num-B with cancelled load

of the accelerometer). The mode shapes num-B* were determined by using

the Chen’s method for the cancellation of the accelerometer’s added mass on

the num-B mode shapes. The correlation of the mode shapes was calculated

using the Modal Assurance Criterion (MAC) [29, 30]. Figure 4 shows the

correlation between the mode shapes of the structure with the added mass

(load case B) and without the added mass (load case A). The diagonal MAC
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values are presented in Table 2.

Table 1: Comparison of resonant frequencies calculated with the numerical model for load

cases A (without the added mass) and B (with the added mass of the accelerometer at

point 15).

Resonant frequency No. Load case A Load case B

1. 383Hz 357Hz

2. 3552Hz 3446Hz

3. 6905Hz 6826Hz

4. 16986Hz 15463Hz

5. 18273Hz 17594Hz

Table 2: Diagonal MAC values of the numerical mode shapes.

Diagonal MAC value

Mode No. num-A, num-B num-A, num-B*

1. 0.98 0.98

2. 0.99 0.99

3. 0.99 1.00

4. 0.72 0.93

5. 0.50 0.93

It is clear from Figure 4 that the fifth mode shape (left MAC matrix)

has a diagonal MAC value significantly lower than 1, which proves that the

mode shapes are not well correlated, because a change of the mode shapes
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occurs due to the additional mass of the accelerometer. If this structural

modification is not taken into account, then the measured operational mode

shapes agree with the load case B. But the goal is to measure the mode shapes

without the added mass (load case A). Chen’s method, which is described in

Section 2.3, was used to calculate the variation of the modal parameters due

to the added mass of the accelerometer. The calculated mode shapes were

transformed from B (with the added mass of the accelerometer) to B* (the

added mass of the accelerometer is cancelled) as demonstrated in Figure 3.

Figure 4 indicates that B* is well correlated to A, because all the diagonal

elements of the right MAC matrix are very close to 1 and the others are close

to 0. Chen’s method is therefore suitable for this study and it can be used on

the measurement results, as it correctly calculates the variation of the mode

shapes due to the structural modification.

5. Experimental investigation

The aim of the experimental investigation was to analyse the advantages

and disadvantages of the proposed method for the normalisation of the oper-

ational mode shapes in comparison to the mass-change strategy (as demon-

strated by Parloo et al. [12] and Lopez-Aenlle et al. [16]) and also to classic

EMA [2] with a known excitation, because EMA is the most frequently used

method.

5.1. EMA

Measurements of the FRFs were required for the EMA. During these

measurements the excitation force and the response (velocity) of the structure

were monitored simultaneously. The sample was suspended by two strings
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to simulate the free-free support, as shown in Figure 5. The white noise

excitation was carried out in the horizontal direction with the use of the LDS

V-101 electromagnetic shaker that was also suspended by two strings. The

measurement of the response was performed using a LDV Polytec PDV-100

at fifteen points (1-15) in the Y direction, as shown in Section 3 (Figure 2).

The measurement points were the same for the OMA. The structure was

excited at point 9 for the EMA. The Ewins-Gleeson method [1, 2] was used

to identify the modal parameters from the measurements.

A custom-made sensor was developed to measure the excitation force and

transfer it from the shaker to the sample. This sensor is based on a piezo

strain gauge (PCB 740B02). Its structure and functioning are described in

an article by Rovšček et al. [11], where a detailed description of the EMA

procedure can also be found. The effect of the added mass of the force sensor

on the structure was small (0.4 gram) and neglected in the calculation of the

modal parameters.

5.2. OMA

The sample was suspended by two strings when performing the OMA,

as shown in Figure 6. The ambient excitation was carried out using a small

steel ball (4 mm diameter) that was glued to a string and swung into the

structure to achieve impact excitation. The steel ball hit the structure in

point 9 (Figure 2), where all the measured modes were excited well. Excit-

ing the structure with an impact in the same point is in general not a good

practice (as some of the vibration modes would possibly not be excited).

However, when small and light structures are measured, the position change

of the excitation point can result in relatively high variations of the force
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load (amplitude and direction). The variation of the excitation force results

in the decrease of the quality of the analysis. In this research better results

have been achieved by carefully selecting the excitation point and then ex-

cite the system always at that selected point. The reference response was

measured by a B&K 4517-002 accelerometer, which was positioned at point

15. The response at the i-th point on the structure (i = 1, 2, 3, . . . , 15) was

measured using a LDV Polytec PDV-100. From the reference response and

the response at the i-th point on the structure the operating deflection shape

FRFs (ODS FRFs) were obtained. The ODS FRFs were scaled by consid-

ering the variations in the load between the measurement sets as proposed

by Schwarz and Richardson [31], which contributed to a better accuracy.

The resonant frequencies ωi and unnormalised mode shapes {ψi} were ex-

tracted from the scaled ODS FRFs. The ODS FRFs can be curve fit using an

FRF curve-fitting model, as shown by Schwarz and Richardson [31], because

the excitation force spectrum can be assumed to be relatively constant in

the frequency range of the modes of interest. Therefore, the Ewins-Gleeson

method was used for the OMA, just like for the EMA. For the normalisation

of the mode shapes with the mass-change strategy, eight magnets, each with

a mass of 0.21 gram, were added at points 1, 3, 5, 7, 9, 11, 13 and 15 on the

structure and the resonant frequencies ωi,M of the changed structure were

measured. Then the scaling factors αi,00 were calculated, as shown in Equa-

tion (5), to normalise the operational mode shapes of the structure with the

accelerometer at point 15 (load case B). The mode shapes of the structure

itself (without the accelerometer - load case B*) were obtained by using the

method described in Section 2.3.
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The aim of this study was to take into consideration the mode-shape vari-

ation, which occurs on small and light structures while performing the OMA

(because of the added mass of the accelerometer). The accelerometer was

therefore deliberately placed at the point 15 to achieve sufficient modifica-

tion of the mode shapes to clearly present the advantages of the proposed

method. Point 15 is otherwise not the best position for this sensor to obtain

good results with the OMA.

5.3. Comparison of the results

5.3.1. Resonant frequencies

The comparison of the resonant frequencies calculated with the numeri-

cal model and measured with the EMA and OMA is presented in Table 3.

The resonant frequencies for OMA-A (where A denotes the load case) were

measured only with the LDV (without the added mass of the accelerometer).

All the other OMA measurements were performed with the accelerometer

and the LDV, as described in Section 5.2.

Table 3: Comparison of resonant frequencies calculated with the numerical model and

measured with the EMA and OMA.

Res. freq. No. num-A num-B EMA OMA-A OMA-B

1. 383Hz 357Hz 379Hz 377Hz 358Hz

2. 3552Hz 3446Hz 3538Hz 3550Hz 3446Hz

3. 6905Hz 6826Hz 6795Hz 6900Hz 6818Hz

4. 16986Hz 15463Hz 17058Hz 17100Hz 15366Hz

5. 18273Hz 17594Hz 18612Hz 18622Hz 17506Hz
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It is clear from Table 3 that the resonant frequencies of the structure with-

out the accelerometer (num-A, EMA and OMA-A) differ by less than 2 %.

The resonant frequencies of the structure with the accelerometer at point

15 (num-B, OMA-B) are even closer together (less than 0.7 % difference).

Therefore, the measured values of the resonant frequencies are accurate in

both cases, EMA or OMA.

5.3.2. Mode shapes

The results of the EMA will be discussed first. In Figures 7 and 8 the

mass-normalised mode shapes that were measured with the EMA are com-

pared to those that were calculated with the numerical model. The diagonal

MAC values are presented in Table 4. The results show that all the mode

shapes in the frequency range of the sensor (500 Hz - 20 kHz) are well corre-

lated with those of the numerical model (the diagonal MAC values are over

0.9). The first mode shape is below 500 Hz; therefore, the correlation is not

as good as for the modes 2-5 (the diagonal MAC value is just 0.67). The first

mode is the most dominant; therefore, it should be measured with better

accuracy. The first five bending-mode shapes in the direction of the Y axis

can be measured with the described EMA procedure, but the goal of the

proposed OMA procedure is to improve these measurements, especially the

measurement of the 1st mode shape and the mass normalisation of 4th and

5th mode shapes.

The results of the OMA were also compared with those of the numerical

model. The mode shapes were measured for load case B (with the added

mass of the accelerometer), since this measurement for A is not possible

when using an accelerometer. The comparison of the measured (OMA) and
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Table 4: Diagonal MAC values of the numerical, OMA and EMA mode shapes.

Diagonal MAC value

Mode No. num-A, EMA num-A, OMA-B num-A, OMA-B*

1. 0.67 0.99 0.99

2. 0.99 0.98 0.96

3. 0.96 0.98 0.97

4. 0.94 0.69 0.82

5. 0.91 0.52 0.71

the calculated mode shapes is presented in Figures 9 and 10. The diagonal

MAC values are presented in Table 4.

In Figure 9 it is clear that the scale of the numerical and OMA mode

shapes are similar; however, the scale of the EMA mode shapes is rather

different for the 4th and 5th mode shape, as shown in Figure 7. The similar-

ity of the numerical and OMA mode shapes confirms that the scale factors

αi,00 were calculated correctly. If the numerical load case A (without the

added mass) is compared to the OMA measurement results (load case B)

the correlation is not so good, as shown in Figure 10 (left). If the variation

of the modal parameters because of the structural modification is taken into

account, then the mode shapes OMA-B transform into OMA-B*. Figure 10

(right) and Table 4 show that OMA-B* is better correlated with num-A than

OMA-B. All the diagonal MAC values are above 0.71 (the first three even

above 0.95) and the diagonal MAC value for the 4th and 5th modes change

from 0.69 and 0.52 to 0.82 and 0.71. Also, the non-diagonal values of the
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MAC matrix are lowered; therefore, there is better orthogonality of the mode

shapes. This proves that the procedure proposed in this study can be used

to measure the mass-normalised mode shapes of small and light structures,

even if the variation of the mode shapes occurs during the measurement.

This variation is usually caused by the added mass of the sensors.

Table 5: Diagonal MAC values of the numerical mode shapes.

Diagonal MAC value

Mode No. EMA, OMA-B EMA, OMA-B*

1. 0.70 0.70

2. 0.99 0.97

3. 0.95 0.98

4. 0.53 0.66

5. 0.28 0.48

When the results of the OMA are compared with the results of the EMA,

as shown in Figure 11 and Table 5, it is clear that a better correlation of the

mode shapes is achieved if the variation of the modal parameters is taken into

account. This confirms that the consideration of the accelerometer’s added

mass significantly improves the results.

6. Conclusion

This study presents an improved procedure for an operational mode-shape

normalisation. This procedure takes into account the mode-shape variation
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that occurs because of the additional mass of the accelerometer. It is advis-

able to use the proposed method when the mass that is added to the structure

by the accelerometer is not negligible. The measurement of the excitation

force is not needed, which makes the experimental investigation even more

straightforward and easy to perform.

The presented method was first tested on the numerical model. The re-

sults show that the correlation of the mode shapes is much better if the

variation of the modal parameters due to a structural modification is taken

into account. The sample that was used to build the numerical model was

later used for the EMA and OMA measurements. The measurement re-

sults were compared with the numerical model and between the EMA and

OMA. The comparison proves that the method proposed in this study gives

better results than the ordinary mass-change strategy, because the sensor’s

additional mass is cancelled and the mode shapes are scaled correctly. The

proposed method can be used on similar small and light structures and also

on larger structures. This method is important when a mode-shape variation

due to the additional mass of the sensor occurs.
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Figure 1: Comparison of the mass-change strategy and the method used in this study.

Figure 2: Sample under investigation.
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Figure 3: Transformation of the numerical mode shapes num-B into num-B* and compar-

ison with num-A.
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Figure 4: MAC correlation of numerical mode shapes for load case A and B and trans-

formed mode shapes B*.
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Figure 5: Experimental setup for the EMA.

Figure 6: Experimental setup for OMA (with the magnets for the mass-change strategy).
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Figure 7: Mode shapes obtained with the EMA and a comparison with the numerical

mode shapes of the structure itself (num-A).
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Figure 9: Numerical (num-A) and operational (OMA-B, OMA-B*) mode shapes.
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Figure 10: MAC correlation between numerical (num-A) and operational (OMA-B and

OMA-B*) mode shapes.
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Figure 11: MAC correlation between experimental (EMA) and operational (OMA-B and

OMA-B*) mode shapes.
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